» » Созвездия. Звездные карты. Небесные координаты. Задачи по географии: Высота Солнца и широта Значит и солнце выше в Рио-де-Жанейро

Созвездия. Звездные карты. Небесные координаты. Задачи по географии: Высота Солнца и широта Значит и солнце выше в Рио-де-Жанейро

В истинный полдень с помощью угломера измерьте высоту Солнца hс. При использовании гномона высота Солнца определяется по формуле

tgh с = АВ – длина полутени; ВС – высота гномона

Пояснения: рисунок перерисовать, указать угол, соответствующий указанной высоте, в качестве отрезка ВС использовать дерево (здание) известной высоты, отрезок АС измерить по тени шагами. Решение оформить в виде таблицы, куда внести значения величин и сделать вычисления.

Вычислите широту местности по формуле

φ = 90 0 – h с – δ с

где δ с – склонение Солнца на дату наблюдения (определяется по астрономическому календарю или по положению Солнца на эклиптике звёздной карты), h с взять из предыдущего задания.

Пояснения: оформить в виде задачи через дано.

Сделайте выводы (сравните полученные данные φ с данными географической карты и обоснуйте возможность определения географической широты местности данным способом; объясните причину изменения высоты Солнца)

Наблюдение солнечных пятен

Сделать рисунок поверхности фотосферы Солнца с группами пятен.

Определите активность Солнца по формуле

где W – относительное число Вольфа; g – число групп пятен; f – число отдельных пятен

Пояснения: решение оформить в виде таблицы с внесёнными значениями величин и вычислениями.

Сделайте выводы об активности Солнца в настоящее время. Проанализируйте активность Солнца в предыдущие годы, сейчас и дайте прогноз активности на ближайшие 1 – 2 года, постройте график зависимости числа Вольфа от времени, начиная с 2000 года и до 2020 года

Пояснения: график перечертить, отметить указанный период.

Определение полуденной линии по перемещению солнечного пятна

Способ состоит в следующем. В одном из окон, выходящих на южную сторону, на подходящей высоте устанавливают экран с малым отверстием (около 1 см в диаметре). Начав наблюдение за 1,5 - 2 ч. до полудня отмечают в течение 3-4 часов положение солнечного пятна от этого отверстия на полу. В результате получится линия АВ (рис. 53). Держа нитку у отверстия 0, другим ее концом описывают дугу (пунктирная линия), которая пересечет линию АВ в точках С и Д. Из этих точек одинаковым радиусом делают по две засечки и получают точки Е и F. Линия ЕF и будет полуденной линией. Сделать чертёж, фиксировав положение солнечного пятна на полу через каждые 15 мин.

Следует обратить внимание на то, что кривая, которую описывает в течение дня солнечное пятно, меняется в зависимости от склонения Солнца. В дни равноденствий - это прямая линия, при положительных склонениях Солнца (с 21 марта по 23 сентября) кривые представляют собой гиперболы, обращенные выпуклостью от основания, при отрицательных склонениях (с 23 сентября по 21 марта) - выпуклостью к основанию.

Пояснения: Рисунок перерисовать, дополнить необходимыми построениями, описанными в методе и подписать полученную полуденную линию

Сделать выводы, обосновав рассмотренный метод нахождения полуденной линии. Какими ещё методами можно определить полуденную линию, какое практическое значение имеет нахождение полуденной линии.

Учебник для 10 класса

§5.2. Высота светил в кульминации

Найдем зависимость между высотой h светила М в верхней кульминации, его склонением δ и широтой местности φ.

Рис. 20. Высота светила в верхней кульминации.

На рисунке 20 изображены отвесная линия ZZ" ось мира РР" и проекции небесного экватора EQ и линии горизонта NS (полуденная линия) на плоскость небесного меридиана (PZSP"N) Угол между полуденной линией NS и осью мира РР" равен, как мы знаем, широте местности φ. Очевидно, наклон плоскости небесного экватора к горизонту, измеряемый углом EOS, равен 90° - φ (рис. 20). Звезда М со склонением δ, кульминирующая к югу от зенита, имеет в верхней кульминации высоту

h = 90° - φ + δ.

Из этой формулы видно, что географическую широту можно определить, измеряя высоту любой звезды с известным склонением δ в верхней кульминации. При этом следует учитывать, что если звезда в момент кульминации находится к югу от экватора, то ее склонение отрицательно.

  1. Сириус был в верхней кульминации на высоте 10°. Чему равна широта места наблюдения?

    Для нижеследующих упражнений географические координаты городов можно отсчитать по географической карте.

  2. Каково склонение звезд, которые в вашем городе кульминируют в зените? в точке юга?
  3. Определите полуденную высоту Солнца в Архангельске и в Ашхабаде в дни летнего и зимнего солнцестояния.

10-11 класс

Задание № 1

1. Восход и заход звёзд

2. Смена фаз Луны

4. Восход и заход Солнца

5. Солнечные затмения

6. Приливы

Задание № 2

( Замечание

Задание № 3

Задание № 4

h

Задание № 5

Критерии оценивания

Всероссийская олимпиада школьников

Школьный этап олимпиады по астрономии 2017-2018 учебного года

10-11 класс

Время на выполнение работы 60 минут

Задание № 1

Из приведённого списка явлений выберите те, которые вызваны, кроме всего прочего, вращением Луны вокруг Земли. Ответ запишите в виде последовательности цифр.

1. Восход и заход звёзд

2. Смена фаз Луны

3. Смена сезонов года (зима, весна, лето, осень)

4. Восход и заход Солнца

5. Солнечные затмения

6. Приливы

Ответ: 2,5,6.

За каждый правильный из трех ответов 5 баллов. Максимально 15 баллов.

Задание № 2

Зимнее солнцестояние состоялось 22 декабря 2015 года, а весеннее равноденствие произойдёт 20 марта 2016 года. Сколько дней пройдёт между этими событиями?

( Замечание . Считать, что между 1 и 2 декабря проходит 1 день.)

Ответ: 89 – за правильный ответ 10 баллов.

Задание № 3

Задача. Сириус (α Большого Пса = - 17) был в верхней кульминации на высоте 10. Чему равна широта места наблюдения?

Ответ:

Дано: Решение:

δ= склонение Сириуса дано в условиях задачи. Из формулы

h находим, что широта.

φ =?

Ответ:

За правильные расчеты 10 баллов, за правильно выбранную формулу 5 баллов. Максимально - 10 баллов.

Задание № 4

Определите полуденную высоту Солнца h в Архангельске () и в Ашхабаде () в дни летнего и зимнего солнцестояния.

Ответ:

Дано:

Найти:

Решение: приближенные значения широты Архангельска () и Ашхабада () даны в условиях задачи. Склонения Солнца в дни летнего и зимнего солнцестояний известны.

По формуле находим: , .

За каждую правильно посчитанную высоту по 5 баллов. Максимально 20 баллов.

Задание № 5

Сколько времени для наблюдателя, находящегося на Луне, проходит от одной кульминации звезды до следующей?

Ответ: 27,3 суток. Этот промежуток времени – период обращения Луны вокруг Земли в системе отсчета, связанной со звездами (сидерический месяц). Кульминация светила – момент пересечения небесного меридиана.

За правильный ответ 10 баллов.

Максимальное количество баллов за все задания: 65 баллов

Под созвездием понимают область неба в пределах некоторых установленных границ. Все небо разделено на 88 созвездий, которые можно находить по характерному для них расположению звезд.
Некоторые названия созвездий связаны с греческой мифологией, например Андромеда, Персей, Пегас, некоторые - с предметами, которые напоминают фигуры, образуемые яркими звездами созвездий: Стрела, Треугольник, Весы и др.. Есть созвездия, названные именами животных, например Лев, Рак, Скорпион.
Созвездия на небосводе находят, мысленно соединяя их ярчайшие звезды прямыми линиями в некоторую фигуру. В каждом созвездии яркие звезды издавна обозначали греческими буквами, чаще всего самую яркую звезду созвездия - буквой , затем буквами ,и т.д. в порядке алфавита по мере убывания яркости; например, Полярная звезда есть созвездия Малой Медведицы .
Звезды имеют разную яркость и цвет: белый, желтый, красноватый. Чем краснее звезда, тем она холоднее. Наше Солнце относится к желтым звездам.
Ярким звездам древние арабы дали собственные имена. Белые звезды: Вега в созвездии Лиры, Альтаир в созвездии Орла, (видны летом и осенью), Сириус - ярчайшая звезда неба (видна зимой); красные звезды: Бетельгейзе в созвездии Ориона и Альдебаран в созвездии Тельца (видны зимой), Антарес в созвездии Скорпиона (виден летом); желтая Капелла в созвездии Возничего (видна зимой).
Точные измерения показывают, что звезды имеют как дробные, так и отрицательные звездные величины, например: для Альдебарана звездная величина m =1,06, для Веги m =0,14, для Сириуса m = -1,58, для Солнца m = - 26,80.
Явления суточного движения звезд изучают, воспользовавшись математическим построением - небесной сферой, т. е. воображаемой сферой произвольного радиуса, центр которой находится в точке наблюдения.
Ось видимого вращения небесной сферы, соединяющую оба полюса мира (Р и Р") и проходящую через наблюдателя, называют осью мира . Ось мира для любого наблюдателя всегда будет параллельна оси вращения Земли.
Чтобы сделать звездную карту, изображающую созвездия на плоскости, надо знать координаты звезд. В экваториальной системе одной координатой является расстояние светила от небесного экватора, называемое склонением . Оно меняется в пределах ±90° и считается положительным к северу от экватора и отрицательным к югу. Склонение аналогично географической широте. Вторая координата аналогична географической долготе и называется прямым восхождением .
Прямое восхождение светила измеряется углом между плоскостями больших кругов, один проходит через полюсы мира и данное светило, а другой - через полюсы мира и точку весеннего равноденствия, лежащую на экваторе. Так назвали эту точку потому, что в ней Солнце бывает (на небесной сфере) весной 20-21 марта, когда день равен ночи.

Определение географической широты

Явления прохождения светил через небесный меридиан называются кульминациями. В верхней кульминации высота светила максимальна, в нижней кульминации - минимальна. Промежуток времени между кульминациями равен половине суток.
Географическую широту можно определить, измеряя высоту любого светила с известным склонением в верхней кульминации. При этом следует учитывать, что если светило в момент кульминации находится к югу от экватора, то его склонение отрицательно.

ПРИМЕР РЕШЕНИЯ ЗАДАЧИ

Задача . Сириус был в верхней кульминации на высоте 10°. Чему равна широта места наблюдения?

Эклиптика. Видимое движение Солнца и Луны

Солнце и Луна меняют высоту, на которой они кульминируют. Отсюда можно сделать вывод, что их положение относительно звезд (склонение) изменяется. Известно, что Земля движется вокруг Солнца, а Луна вокруг Земли.
Определяя высоту Солнца в полдень, заметили, что дважды в году оно бывает на небесном экваторе, в так называемых равноденственных точках . Это происходит в дни весеннего и осеннего равноденствий (около 21 марта и около 23 сентября). Плоскость горизонта делит небесный экватор пополам. Поэтому в дни равноденствий пути Солнца над и под горизонтом равны, следовательно, равны продолжительности дня и ночи. Двигаясь по эклиптике, Солнце 22 июня отходит дальше всего от небесного экватора в сторону северного полюса мира (на 23°27"). В полдень для северного полушария Земли оно выше всего над горизонтом (на эту величину выше небесного экватора). День самый длинный, он называется днем летнего солнцестояния .
Путь Солнца пролегает через 12 созвездий, называемых зодиакальными (от греческого слова зоон - животное), а их совокупность называется поясом зодиака. В него входят следующие созвездия: Рыбы, Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог, Водолей . Каждое зодиакальное созвездие Солнце проходит около месяца. Точка весеннего равноденствия (одно из двух пересечений эклиптики с небесным экватором) находится в созвездии Рыб.

ПРИМЕР РЕШЕНИЯ ЗАДАЧИ

Задача . Определить полуденную высоту Солнца в Архангельске и в Ашхабаде в дни летнего и зимнего солнцестояния

Дано

1=65°
2=38°
л=23,5°
з=-23,5°

РЕШЕНИЕ

Приближенные значения широты Архангельска (1) и Ашхабада (2) находим по географической карте. Склонения Солнца в дни летнего и зимнего солнцестояний известны.
По формуле

находим:
1л =48,5°, 1з = 1,5°, 2л = 75,5°, 2з =28,5°.

1л -?
2л -?
1з -?
2з -?

Движение Луны. Солнечные и лунные затмения

Не будучи самосветящейся, Луна видна только в той части, куда падают солнечные лучи, либо лучи, отраженные Землей. Этим объясняются фазы Луны. Каждый месяц Луна, двигаясь по орбите, проходит между Землей и Солнцем и обращена к нам темной стороной, в это время происходит новолуние. Через 1 - 2 дня после этого на западной части неба появляется узкий яркий серп молодой Луны. Остальная часть лунного диска бывает в это время слабо освещена Землей, повернутой к Луне своим дневным полушарием. Через 7 суток Луна отходит от Солнца на 90°, наступает первая четверть, когда освещена ровно половина диска Луны и "терминатор", то есть линия раздела светлой и темной стороны, становится прямой - диаметром лунного диска. В последующие дни "терминатор" становится выпуклым, вид Луны приближается к светлому кругу и через 14 - 15 суток наступает полнолуние. На 22-е сутки наблюдается последняя четверть. Угловое расстояние Луны от Cолнца уменьшается, она опять становится серпом и через 29,5 суток вновь наступает новолуние. Промежуток между двумя последовательными новолуниями называется синодическим месяцем, имеющим среднюю продолжительность 29,5 суток. Синодический месяц больше сидерического. Если новолуние происходит вблизи одного из узлов лунной орбиты, происходит солнечное затмение, а полнолуние близ узла сопровождается лунным затмением.

Лунные и солнечные затмения

Вследствие небольшого изменения расстояний Земли от Луны и Солнца видимый угловой диаметр Луны бывает то немного больше, то немного меньше солнечного, то равен ему. В первом случае полное затмение Солнца длится до 7 мин. 40 с, в третьем - только одно мгновение, а во втором случае Луна вообще не закрывает Солнца целиком, наблюдается кольцеобразное затмение . Тогда вокруг темного диска Луны виден сияющий ободок солнечного диска.
На основе точного знания законов движения Земли и Луны вычислены на сотни лет вперед моменты затмений и то, где и как они будут видны. Составлены карты, на которых показаны полоса полного затмения, линии (изофазы), где затмение будет видно в одинаковой фазе, и линии, относительно которых для каждой местности можно отсчитать моменты начала, конца и середины затмения.
Солнечных затмений в году для Земли может быть от двух до пяти, в последнем случае непременно частных. В среднем в одном и том же месте полное солнечное затмение бывает видно чрезвычайно редко - лишь однажды в течение 200-300 лет.
Если Луна оказывается между Солнцем и Землей в новолуние, тогда случаются солнечные затмения. При полном затмении Луна совсем закрывает солнечный диск. Среди бела дня вдруг на несколько минут наступают сумерки и невооруженному глазу становятся видны слабо светящаяся корона Солнца и ярчайшие звезды.

Полное солнечное затмение

Точное время и определение географической долготы

Для измерения коротких промежутков времени в астрономии основной единицей является средняя длительность солнечных суток , т. е. средний промежуток времени между двумя верхними (или нижними) кульминациями центра Солнца. Это связано с тем, что Земля обращается вокруг Солнца не по кругу, а по эллипсу и скорость ее движения при этом немного меняется.
Момент верхней кульминации центра Солнца, называется истинным полднем . Но для проверки часов, для определения точного времени нет надобности отмечать по ним именно момент кульминации Солнца. Удобнее и точнее отмечать моменты кульминации звезд, так как разность моментов кульминации любой звезды и Солнца точно известна для любого времени.
Определение точного времени, его хранение, и передача по радио всему населению составляет задачу службы точного времени , которая существует во многих странах.
Для счета больших промежутков времени люди с древних пор использовали продолжительность либо лунного месяца, либо солнечного года, т. е. продолжительность оборота Солнца по эклиптике. Год определяет периодичность сезонных изменений. Солнечный год длится 365 солнечных суток 5 часов 48 минут 46 секунд .
При составлении календаря необходимо учитывать, что продолжительность календарного года должна быть как можно ближе к продолжительности оборота Солнца по эклиптике, и что календарный год должен содержать целое число солнечных суток, так как неудобно начинать год в разное время суток.

Цель: сформировать умения ориентироваться по солнцу, определять полуденную линию, высоту полуденного солнца над горизонтом.
Оборудование : гномон (ровный шест длиной 1-1,5 м), вертикальный угломер-эклиметр или транспортир с отвесом, тонкая рейка или отрезок шпагата длиной 2 м.

Методические рекомендации
В течение года высота солнца над горизонтом изменяется: 22 июня - в день летнего солнцестояния - оно занимает самое высокое положение, 22 декабря - в день зимнего солнцестояния -– самое низкое, а в дни равноденствия - 21 марта и 23 сентября - промежуточные. В Северном и Южном полушариях изменение высоты полуденного солнца имеет противоположную направленность.

Ход работы

Задание 1 . Определение полуденной линии.
На ровной площадке ближе к полудню вертикально установите гномон. Зафиксируйте первым колышком конец падающей от него тени и радиусом (точка 1), равным длине тени и очертите другим колышком окружность. Внимательно следите за тем, как тень будет укорачиваться. Через определенное время тень начнет удлиняться и второй раз коснется окружности, но уже в другой точке (точка 2) (см. рис. 1) .

Рис. 1. Определение полуденной линии
В торой колышек вбейте в эту точку. Натяните шпагат от первого колышка ко второму колышку. Найдите середину этого отрезка. Вбейте третий колышек. Соедините этот колышек шпагатом с основанием гномона. Это будет полуденная линия, которая показывает направление на север и совпадает с местным меридианом. Проверьте направление по компасу.

Задание 2 . Определение высоты стояния солнца над горизонтом.
Установите рейку так, чтобы она одним концом упиралась в основание третьего колышка, а другим легла на верхний конец гномона, образовав угол с горизонтальной поверхностью. Определите его величину с помощью эклиметра или вертикального угломера. Таким образом вы определите высоту солнца над горизонтом в полдень.

Задание 3 . Ответьте на вопросы.

1. Как изменяется высота солнца над горизонтом в течение суток
и года?

2. Определите по часам время солнечного полудня. Совпадает ли время полудня (12 ч) с солнечным? Объясните причину.

Ориентирование в пространстве

Цель: научить приемам ориентирования в пространстве по местным признакам и компасу.
Оборудование : компас, мерная лента или 15-метровая рулетка, часы наручные механические, дальномер школьный, планшет.

Методические рекомендации
Ориентирование в пространстве - это определение на местности своего местоположения или точки стояния относительно сторон горизонта, окружающих объектов местности, а также направлений и расстояний движения.

Ориентирование в пространстве включает:
1) соотнесение реальной местности с планом и картой;
2) определение на местности сторон горизонта и своего положения по отношению к объектам местности: населенному пункту, реке, железной дороге и т. д.;
3) определение расстояния на местности и их графическое выражение на бумаге.
4) выбор необходимого направления движения.

Ход работы
Задание 1 . Определение направления сторон горизонта по компасу.
Самым точным способом общего ориентирования на местности является ориентирование по компасу. Для того чтобы определить направление сторон горизонта по компасу необходимо сделать следующее:
1. Удалить на расстояние 1-2 м от компаса все металлические предметы;

2.Установить компас в горизонтальной плоскости на ладони или планшете;

3.Вращая компас в горизонтальной плоскости, добиться совмещения северного конца магнитной стрелки компаса с буквой С. В этом положении компас сориентирован и теперь по нему можно определять стороны горизонта.

Задание 2 . Ориентирование по солнцу с помощью часов.
С помощью наручных механических часов вы можете определить направление линии север - юг в данный момент времени. Для этого необходимо сделать следующее:

1. положить часы в горизонтальной плоскости и направить часовую стрелку на солнце;

2. мысленно построить угол между маленькой часовой стрелкой
и цифрой 11 на циферблате часов. Биссектриса этого угла и будет местным меридианом.

Движение по азимуту

Цель: научить приемам ориентирования в пространстве и определения направления движения по азимуту.
Оборудование : компас, мерная лента или 10-15-метровая рулетка, часы наручные механические, дальномер школьный, планшет.

Методические рекомендации
Пользуясь компасом, можно определить стороны горизонта, направление движения по азимуту. Азимут - это угол между направлением на север и направлением на заданный предмет, который отсчитывается по часовой стрелке.
Например, зная, что азимут из точки А в точку Б составляет 45º (А = 45º), вы, сориентировав компас, определяете азимут и идете в нужном направлении.
При движении он или задается, или его определяется. Для определения азимута движения из одного пункта (точки стояния) в другой необходима карта.

Для ориентирования на местности важно уметь определять не только направление, но и расстояние. Измеряют расстояние с помощью различных методов: счета шагов и времени движения, визуальных, инструментальных. Визуальная (на глаз) оценка расстояний - это наблюдение объектов местности и их видимость в зависимости от удаленности от наблюдателя (см. табл. 1). Такой метод позволяет определять расстояние приблизительно, для этого необходима постоянная тренировка.

Таблица 1

Глазомерное определение расстояний

Расстояние Наблюдаемые объекты
10 км Трубы больших заводов
5 км Общие очертания домов (без дверей и окон)
4 км Очертания окон и дверей едва различимы
2 км Высокие одинокие деревья; человек - едва различимая точка
1 500 м Крупные машины на дороге, человек различается еще в виде точки
1 200 м Отдельные деревья средней величины
1 000 м Телеграфные столбы; в постройках различимы отдельные бревна
700 м Фигура человека без деталей одежды уже вырисовывается
400 м Движения рук человека заметны, различаются цвет одежды, переплеты на рамах окон
200 м Очертания головы
150 м Кисти рук, линия глаз, подробности одежды
70 м Глаза в виде точек

Ход работы

Задание 1 . Определение азимута 90º, 145º, 225º с помощью компаса.
Пройдите в этих направлениях небольшое расстояние. Чтобы
не сбиться с выбранного направления движения, запишите заметные объекты местности, это будут ориентиры направления, по которому вы должны двигаться.

Задание 2 . Определение расстояния до выбранных объектов местности.
Для точного определения расстояний в профессиональной деятельности применяют рулетки, мерные ленты, теодолиты, радиопеленгаторы
и другие инструменты. В обычной жизни применяют неинструментальные методы.
1. Выберите объект на открытой местности и визуально определите расстояние до него, пользуясь таблицей 1.
2. Чтобы более точно определить расстояние на глаз можно использовать прием, который основан на простом математическом расчете. Возьмем линейку в руку, направим ее на отдаленный предмет, высота которого вам известна, допустим 10 м. Перемещая линейку в пальцах рук, добьемся такого положения, когда отрезок линейки, предположим 10 см, полностью закроет этот предмет. Определите расстояние от глаза до линейки. Оно равно примерно 70 см. Теперь вам известны три величины, но
не известно расстояние до предмета. Составим формулу, в которой длина линейки относится к высоте предмета Х так же, как длина вытянутой руки к расстоянию до предмета. Решим пропорцию:
10 м: Х = 10 см: 70 см,
10 м: Х = 0,1 м: 0,7 м,
Х = 70 м.

Этим методом удобно пользоваться, определяя расстояние до недоступных предметов, расположенных, например, на другом берегу реки.

Задание 3 . Измерение расстояния шагами.
Необходимо знать длину своего шага. Отложите на ровном участке местности отрезок длиной 50 м. Пройдите это расстояние несколько раз
и определите среднее арифметическое количество шагов.
Например, 71 + 74 + 72 = 217 шагов. Общее количество шагов разделите на 3 (217: 3 = 72). Среднее количество шагов составляет 72. Разделите 50 м на 72 шага и вы получите среднюю длину вашего шага - примерно 55 см.

Измерить расстояние до любого доступного предмета можно в шагах. Например, если вы сделали 690 шагов, т. е. 55 см × 690 = 37 м.
Запишите в дневнике и сравните результаты по определению расстояний разными способами. Определите степень точности каждого метода.